Rigid sphere transport through a colloidal gas–liquid interface

نویسندگان

  • J W J de Folter
  • V W A de Villeneuve
  • D G A L Aarts
  • H N W Lekkerkerker
چکیده

In this paper we report on the gravity-driven transport of rigid spheres of various sizes through the fluid–fluid interface of a demixed colloid–polymer mixture. Three consecutive stages can be distinguished: (i) the sphere approaches the interface by sedimenting through the polymer-rich phase, (ii) it is subsequently transported to the colloid-rich phase and (iii) it moves away from the interface. The spheres are covered by a thin wetting film of the colloidrich phase, to which they are eventually transported. The ultralow interfacial tension in these phase-separating mixtures results in very small capillary forces so that the process takes place in the low Reynolds regime. Moreover, it enables the investigation of the role of capillary waves in the process. Depending on the Bond number, the ratio between gravitational force and capillary force acting on the sphere, different transport configurations are observed. At low Bond numbers, the drainage transport configuration, with a dominant capillary force, is encountered. At high Bond numbers, spheres are transported through the tailing configuration, with a dominant gravitational force. By varying the sphere diameter, we observe both transport configurations as well as a crossover regime in a single experimental system. 3 Author to whom any correspondence should be addressed. New Journal of Physics 12 (2010) 023013 1367-2630/10/023013+24$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamics and Kinetics of Vaporization of Pbs From Complex Cu-Fe Mattes

Thermodynamics and kinetics of vaporization of lead sulfide from typical copper-smelting mattes of commercial interest are investigated in the temperature range 1388 K to 1573 K by vapor transport technique and plasma arc spectroscopy. The total mass of the dominant vaporizing species PbS that leaves the matte is described by the Newman's numerical solution to the second Fick's law combined wit...

متن کامل

Particle dynamics in colloidal suspensions above and below the glass-liquid re-entrance transition

We study colloidal particle dynamics of a model glass system using confocal and fluorescence microscopy as the sample evolves from a hard-sphere glass to a liquid with attractive interparticle interactions. The transition from hard-sphere glass to attractive liquid is induced by short-range depletion forces. The development of liquid-like structure is indicated by particle dynamics. We identify...

متن کامل

Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.

In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore con...

متن کامل

Wetting in a colloidal liquid-gas system.

We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

متن کامل

Life at ultralow interfacial tension: wetting, waves and droplets in demixed colloid-polymer mixtures

Mixtures of colloids and polymers display a rich phase behavior, involving colloidal gas (rich in polymer, poor in colloid), colloidal liquid (poor in polymer, rich in colloid) and colloidal crystal phases (poor in polymer, highly ordered colloids). Recently, the colloidal gas-colloidal liquid interface received considerable attention as well. Due to the colloidal length scale the interfacial t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010